首页> 外文OA文献 >Protein secondary structure prediction using deep convolutional neural fields
【2h】

Protein secondary structure prediction using deep convolutional neural fields

机译:用深度卷积神经网络预测蛋白质二级结构   领域

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Protein secondary structure (SS) prediction is important for studying proteinstructure and function. When only the sequence (profile) information is used asinput feature, currently the best predictors can obtain ~80% Q3 accuracy, whichhas not been improved in the past decade. Here we present DeepCNF (DeepConvolutional Neural Fields) for protein SS prediction. DeepCNF is a DeepLearning extension of Conditional Neural Fields (CNF), which is an integrationof Conditional Random Fields (CRF) and shallow neural networks. DeepCNF canmodel not only complex sequence-structure relationship by a deep hierarchicalarchitecture, but also interdependency between adjacent SS labels, so it ismuch more powerful than CNF. Experimental results show that DeepCNF can obtain~84% Q3 accuracy, ~85% SOV score, and ~72% Q8 accuracy, respectively, on theCASP and CAMEO test proteins, greatly outperforming currently popularpredictors. As a general framework, DeepCNF can be used to predict otherprotein structure properties such as contact number, disorder regions, andsolvent accessibility.
机译:蛋白质二级结构(SS)预测对于研究蛋白质结构和功能非常重要。当仅将序列(配置文件)信息用作输入功能时,当前最佳的预测变量可以获得约80%的Q3准确性,这在过去十年中没有得到改善。在这里,我们介绍用于蛋白质SS预测的DeepCNF(深卷积神经场)。 DeepCNF是条件神经场(CNF)的DeepLearning扩展,它是条件随机场(CRF)和浅层神经网络的集成。 DeepCNF不仅可以通过深层次的体系结构建模复杂的序列-结构关系,而且可以建模相邻SS标签之间的相互依赖性,因此它比CNF强大得多。实验结果表明,DeepCNF可以在CASP和CAMEO测试蛋白上分别获得〜84%的Q3准确度,〜85%的SOV评分和〜72%的Q8准确度,大大优于目前流行的预测指标。作为一般框架,DeepCNF可用于预测其他蛋白质结构特性,例如接触数,无序区域和溶剂可及性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号